
Public health relevance of platelet bacterial screening

Arjun Srinivasan, MD
Division of Healthcare Quality Promotion
National Center for Infectious Diseases
Centers for Disease Control and Prevention

Outline

- Need for bacterial screening
- Public health considerations:
 - Organism identification
 - Shared data collection and analysis
 - Use of results
 - Impact of screening on platelet supply
- Potential next steps

Comparison of Per-unit Risk for Transmission of Bacterial and Viral Pathogens


Bacterial contamination of blood (BaCon) study

Though bacterial contamination is thought to be a serious problem, there had never been a rigorous, prospective, multi-center evaluation of associated adverse events.

Goal of the BaCon study

To prospectively evaluate the incidence of septic transfusion reactions caused by contaminated blood products.

Fatal reactions

Septic reactions

Febrile and other reactions

Contaminated products

BaCon design

- Collaborative effort involving:
 - American Association of Blood Banks
 - American Red Cross
 - Department of Defense
 - -CDC
 - Many hospitals and transfusion centers

Reporting Criteria: Any of the following that occur within 4 hours of transfusion

Fever

- Temperature ≥39° C or ≥ 102° F
- Temperature ≥ 2° C or ≥ 3.5° F rise*
- Rigors (shaking chills)
- Tachycardia
 - − Heart rate ≥120/min or ≥ 40/min rise*
- Systolic blood pressure
 - Rise ≥ 30 mm Hg*
 - Drop ≥ 30 mm Hg*
 *change from pre-transfusion values

Case Definition

- Confirmed Case
 - One or more clinical criteria for transfusion reaction
 - Culture-positive blood product
 - Recipient blood culture grows the same organism recovered from blood product
 - Organism pair identical by Pulsed-Field Gel Electrophoresis (PFGE)

Results

- 34 septic reactions
- Products
 - 19 Single donor platelets
 - 10 Pooled platelets
 - -5 RBCs
- Recipients
 - 76% with underlying malignancy
 - -9 (27%) had fatal outcome

Kuehnert MJ, Roth VR, Haley NR et al.

Transfusion 2001;41:1493-99

Bacteria Implicated

Gram-negative (14)

Escherichia coli (5)

Serratia marcescens (3)

S. liquefaciens (2)

Enterobacter cloacae

E. aerogenes

Providencia rettgeri

Yersinia enterocolitica

41%

59%

Gram-positive (20)

Staphylococcus epidermidis (8)

S. aureus (4)

Grp B Streptococcus (2)

Grp G Streptococcus

S. lugdunensis

Bacillus cereus

Enterococcus faecalis

Streptococcus pneumoniae

Kuehnert MJ, Roth VR, Haley NR et al.

Transfusion 2001;41:1493-99

Gram negative organisms

- Mortality significantly higher in cases with gram negative organisms:
 - 83% (gram negative) vs. 17% (gram positive) (p < 0.001).
- High levels of endotoxin in many units contaminated with gram negative organisms.

Estimated U.S. Rates of sepsis and death related to contaminated blood products 1998-2000

Event	RBC	SDP	<u>PP</u>
Units distributed	23,711,169	1,804,725	1,033,671*
Cases (fatal)	5 (3)	18 (4)	11 (2)
Case Rate (per million)	.21	9.98	10.64
Fatality Case Rate	.13	2.22	1.94

^{*}Average pool assumed to be 6 single-unit concentrates

RBC=Red Blood Cell Unit

SDP=Single-Donor Platelet Unit, PP=Pooled Platelet Unit

Kuehnert MJ, Roth VR, Haley NR et al.

Transfusion 2001;41:1493-99

Limitations of BaCon

BaCon did:

 prospectively describe reaction rates and etiologic pathogens for documented septic reactions.

Bacon did not:

- Provide information on other, non-septic reactions due to contaminated products
- Estimate the incidence of bacterial contamination of products

BaCon implications for screening

- Important issues related to gram negative organisms:
 - Less likely to be skin contaminants, more likely related to donor bacteremia- better skin antisepsis will not address
 - Produce endotoxin- complicates therapy

Bacterial screening of platelets

- The question now is not whether, but how!
- Data indicate that screening will save lives, however, implementation of the screening standard raises some important public health issues.

Public health considerations of platelet screening

- Identification of contaminating organisms
- Shared data collection
- Using results for quality assurance and improvement
- Issues with platelet supply

Organism identification

- Identification requires significant investments in resources and time:
 - Microbiology equipment
 - Staff training
 - Certification

Why might identification be useful?

- Organism identification may help improve the health of:
 - Recipients
 - Donors
 - The community

Organism identification: Recipient health

If the unit has been transfused, knowing the organism can help the treating clinician choose the most appropriate therapy.

Organism identification: Donor health

- The blood banking community has already set the standard for donor notification.
- Findings on blood screening that have important implications for donors, like presence of HIV or hepatitis, are conveyed to the donors so action can be taken.

Organism identification: Donor health

- In most cases, donors with bacterial bloodstream infections will be excluded because they will have symptoms.
- However, there are cases when asymptomatic bacteremia may have important consequences for the donor.

Case: Donor health

- Patient received platelets and subsequently developed a blood stream infection with Streptococcus agalactiae (group B streptococcus)unit found to be contaminated.
- Bacteremia with this organism has been associated with colon cancer.

Case: Donor health

- The donor was notified and encouraged to undergo screening for colon cancer.
- A sigmoidoscopy revealed a tumor that was removed.

Organism identification: Community health

 Findings of unexpected clusters of organisms may lead to important discoveries.

Case I: Community health

- An unusual cluster of 2 cases of Serratia marcescens bloodstream infections related to transfusions prompted an investigation.
- A national survey found 11/1515 units (0.73%) of blood products were contaminated with S. marcescens.

Case I: Community health

- Investigators determined that all of the contaminated units had been collected in bags from a single batch made by one company.
- Cultures taken at the manufacturing plant grew S. marcescens that was identical to the patient samples.

- Healthy donor who gave regularlynearly once a month over the last few years.
- Platelets obtained during one apheresis session were transfused into 2 patients.

- Patient 1 developed septic shock during the transfusion requiring initiation of life support
- Patient 2 developed septic shock 1 hour after the transfusion and later died.
- Blood cultures from both patients grew Salmonella enterica

- Because the organism was so unusual, an investigation was initiated.
- Blood cultures of the donor grew S. enterica, though he was asymptomatic.
- It was found that the donor had a pet snake which was colonized with S. enterica.

Case II: Community health

Given how often this person donated, the investigation likely prevented transmission to other patients (in addition to helping the donor!).

Organism identification: Community health

- These types of outbreaks are probably extremely rare, but the cases illustrates how serious the consequences can be.
- Bacterial screening provides a powerful method to find and stop such events, but doing so will require identifying the organism.

Shared data collection and analysis

- Bacterial screening will generate a significant amount of data- especially if organisms are identified.
- Keeping track of the information will again require investment of resources.

Why might data collection and sharing be useful?

- Knowing how often units are contaminated and what they are contaminated with can help with:
 - Quality assurance
 - Surveillance for unusual outbreaks

Using microbiology for quality assurance

- Data collection will help establish a baseline or expected rate of contamination.
- Changes in contamination rates can prompt investigation into collection and processing practices.

Using microbiology for quality assurance

- Knowing the identity of the organism can help focus investigations:
 - Increases in skin flora might prompt a review of collection practices.
 - Increases in some gram negatives might prompt investigation into processing and storage issues.

Using microbiology for outbreak surveillance

 Bacterial screening creates an opportunity to link results from separate areas which may help uncover outbreaks.

Issues with supply

- Concerns have been raised about the utility of some of the non-culture methods for screening.
- We err on the side of caution, but too many false positive results may have serious implications for platelet supply.

Unanswered questions

- Though an important step forward, bacterial screening raises some important issues:
 - How should we compile and track results?
 - How can results best be used for QA?
 - How sensitive and specific are the nonculture methods and what impact might false positive results have on supply?

Collaboration is key: West Nile Virus and Blood Safety

- By June 1, 2003 testing in place (with FDA approval via IND).
- Weekly meetings with AABB WNV task force to coordinate data monitoring

West Nile Virus and Blood Safety: A public health success in 2003

- Of approximately 4.5 million donations screened, nearly 1,000 units of presumed WNV-infected blood detected and removed.
- Multiple units from each infected donation likely would otherwise have been transfused

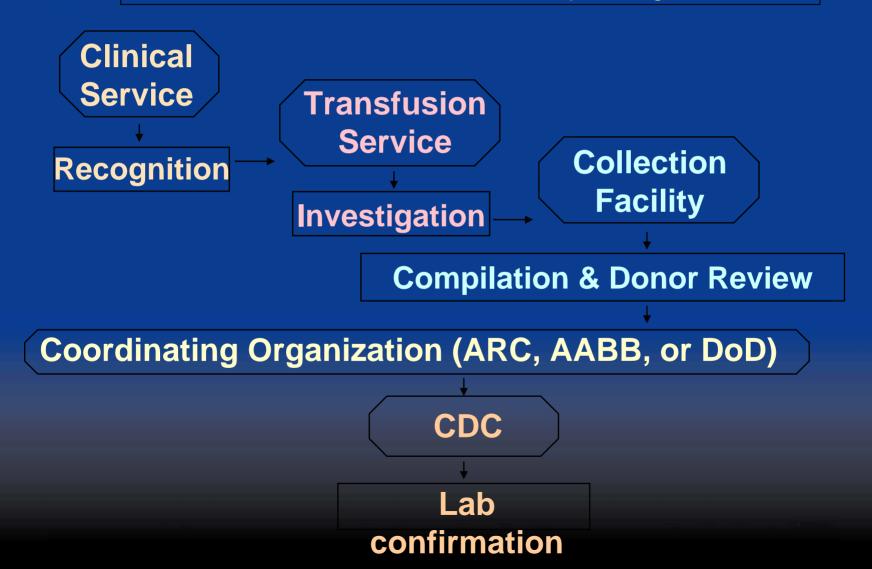
Collaboration is key

- The WNV Task Force and the BaCon study were great examples of how public health and the blood banking community can work together to address important issues.
- Bacterial screening provides another opportunity to collaborate for public health benefit.

Potential collaborative efforts

- Establishing procedures to collect information in a standard format.
- Projects to demonstrate the use and value of screening as part of QA.
- Projects to prospectively evaluate the performance of screening methods.

Conclusion


- Bacterial screening of platelets is an important step forward.
- Like any new measure, it does raise some important questions.
- As we have in the past, the blood banking and public health communities can and should work together to answer those questions.

Organism identification and community health

There are some organisms that may prompt investigations, with useful results.

BaCon reporting

In addition to established Standard Operating Procedures

Results: January 1998 - December 2000

56 evaluable episodes

44 (79%) met clinical criteria

34 (61%) confirmed by molecular typing

Tip of the iceberg- example of an excluded case

Patient with leukemia got platelets and developed fever 22 hours after transfusion. Blood cultures and cultures of the transfused unit grew *S.* aureus but the case was not included because the reaction occurred more than 4 hours after transfusion.